Exponents
The Exponent of a number says how many times to use that number in a multiplication.
That is,
Exponents are the mathematical shorthand that tells us to multiply the same number by
itself for a specified number of times.
Example
The simpler way to write 5 * 5 * 5 * 5 * 5 * 5 as 5^6 or 56 .
Base : The number being multiplied by itself.
in our example, 5 the base .
Exponent : The number of times we are multiplying the base .
in our example , 6 is the exponent. Exponent are also called as power or index .
Laws of Exponents
1 . x ^ 1 = x [ identity exponent ]
Example :
- 5 ^ 1 = 5
- 8 ^ 1 = 8
- 0 ^ 1 = 0
- (-3) ^ 1 = -3
2 . x ^ -n =( 1 / x) ^ n [ Negative exponent ]
Note :
Note :
x ^ -1 = 1 / x
( x / y ) ^ -n = ( y / x ) ^ n
Example
(5/3)^- 2 = (3/5)^2
= (3/5) * (3/5)
= (3*3) /( 5*5)
= 9 / 25
= (3*3) /( 5*5)
= 9 / 25
3 . x ^ a * x ^ b = x ^ ( a + b ) [ product of powers ]
Example
3^2 * 3^3 = 3^(2+3)
9 * 27 = 3^5
243 = 243
Example
3^2 * 3^3 = 3^(2+3)
9 * 27 = 3^5
243 = 243
4 . x ^ m / x ^ n = x ^ ( m - n ) [ Quotient of powers ]
Example
3 ^ 5 / 3 ^ 2 = 3 ^ ( 5 - 2 )
243 / 9 = 3 ^ 3 or 3*3*3*3*3 / 3*3 = 3 ^ 3
27 = 27 or 3 * 3 * 3 = 27
27 = 27
Example
3 ^ 5 / 3 ^ 2 = 3 ^ ( 5 - 2 )
243 / 9 = 3 ^ 3 or 3*3*3*
27 = 27 or 3 * 3 * 3 = 27
27 = 27
5 . ( x ^ m ) ^ n = x ^ ( m * n ) [ power of power ]
Example
( 5 ^ 3 ) ^ 2 = 5 ^ ( 3 * 2 )
125 ^ 2 = 5 ^ ( 6 )
15,625 = 15,625
Example
( 5 ^ 3 ) ^ 2 = 5 ^ ( 3 * 2 )
125 ^ 2 = 5 ^ ( 6 )
15,625 = 15,625
6 . ( x * y ) ^ m = (x ^ m) * (y ^ m) [ power of a product ]
Example
( 5 * 4 ) ^ 2 = (5 ^ 2) * (4 ^ 2)
20 ^ 2 = 25 * 16
400 = 400
7 . ( x / y ) ^ m = x ^ m / y ^ m [ power of a quotient ]
Example
(5/3)^2 = (5^2) / (3^2)
(5/3) * (5/3) = 25 / 9
25 / 9 = 25 / 9
Example
(5/3)^2 = (5^2) / (3^2)
(5/3) * (5/3) = 25 / 9
25 / 9 = 25 / 9
8 . x ^ 0 = 1 [ zero exponent ]
Note:
3/3 = 1
that is, 3^1/3^1 = 1 ( by law 4 )
3^(1-1) = 1
3^0 = 1
Example
- 5^0 = 1
- (1/5)^0 = 1
9 . x^(m/n) = (x ^m)^1/n = [Fractional exponent]
Example
Example
5^(3/2) = (5^3) ^ (1/2)
= 125 ^ (1/2)
No comments:
Post a Comment